How Nanotechnologies will Disrupt the Electrical Grid

Is it just me, or is the pace of technology innovation speeding up for you too? Acceleration is certainly evident in nanotechnology R&D. Back in December 2014 I wrote two blogs that updated my 2020 predictions first published in January 2014. Nanotechnology discoveries are now occurring on almost a weekly basis. Universities have been a hotbed of scientific discoveries in material sciences. Consider the recent news that graphene, a particularly interesting nanomaterial and photons. A photon is a unit of electromagnetic radiation that has energy but not an electrical charge. To the naked human eye, photons are sunshine. Research in Switzerland revealed that graphene can take one photon and make multiple electrons. This is what today’s solar panels do – convert photons into electrons. But graphene has a multiplier effect, with the potential to boost existing best case conversion rates from 32% to 60%.

While this announcement addresses research results, commercialization won’t be far behind, and we’ll soon be reading about new solar panels that leverage graphene materials to increase harvestability of solar potential. Other research advances focused on making solar harvesting materials more flexible.   What do these research announcements mean? Here are three key points. Solar panels, like microprocessors, will shrink in size and increase in power. Second, areas that have marginal value for solar generation will get a second look as panels improve in their productivity and their flexibility to be adhered to non-traditional surfaces. Third, distributed energy resource (DER) momentum grows as a result as more rooftops, landscapes, and other building surfaces harvest solar energy and proliferate in distribution grids.Gr

Other nano research is concluding that a little stress can be a good thing for silicon crystals known as quantum dots. Around the time of the 1973 energy crisis, the popular saying was “small is beautiful”. In at least some research labs around the world, the new saying could be “small and stressed is beautiful”. One commercial application possibility focuses again on improving the energy harvestability of solar panels made from silicon. However, there’s also interest in how these nanocrystal reactions can increase the charge/discharge cycles of batteries, improve computer displays, and decrease power consumption.

Are investors paying attention? Graphene has been dubbed the “wonder material”, and big players like IBM and Samsung have been allocating money and resources into it.  China has filed more patents involving graphene than any other country. One of the first commercial applications of graphene research is a light bulb that improves on the energy efficiency of LED bulb technologies. Once these new bulbs are available later this year, investors who have been hanging back will be looking for other commercialization opportunities.

From a Smart Grid perspective, graphene has exciting application potential in energy harvesting, energy storage, and even energy consumption, specifically reductions in waste heat. It’s a rapidly innovating area of materials science research that will be the foundation for disruptive technologies integrated into the electric grid. The dual impacts of these disruptors will be to increase the amount of electricity generated by DER assets and reduce electricity consumption as devices become more energy efficient. The speed at which R&D in graphene and other nanomaterials is advancing to commercialization may blast past my predictions of overall progress by 2020.

Share

A Roadmap to Energy Efficiency

The California Public Utilities Commission released a draft document on energy efficiency (EE) titled California’s Existing Buildings Energy Efficiency Action Plan on March 10. The document is a “10 year roadmap to activate market forces and transform California’s existing residential, commercial, and public building stock into high performing and energy efficient buildings.” As previously noted here and here, what the 8th largest economy in the world does in its ambitious plans to improve building energy efficiency will have impacts far beyond its borders. This new document identifies policy directions that will have profound economic and environmental implications in California and beyond its borders.

According to the Department of Energy, buildings take 73% of the electricity consumption in the USA. Residential and commercial buildings that are retrofitted to consume less electricity and natural gas put more money into consumer pockets and improve the bottom lines for businesses. Those reductions become widely-distributed and persistent savings.

There are employment benefits as well. Approximately 61% of all construction projects are retrofit projects, and require onsite labor to complete them. That means local economies benefit from increased employment in skilled blue collar trades. But many EE retrofits also include high tech solutions that make buildings smart – sensors, wireless communications, and analytics software, with concomitant increases in sales and growth in the companies that provide these solutions.

The CPUC roadmap outlines five goals that include objectives, strategies, and partnering arrangements within each goal. A striking common characteristic is the transparency that the five goals strive to create about energy and water efficiency through the collection and management of data. Starting with benchmarking and disclosing building performance, which sets an invaluable data foundation, the other goals methodically leverage this performance data to provide new perspectives for decision-making. Increased access to and understanding of building performance data can lead to more informed actions regarding investments. This transparency also serves to promote awareness of the value of EE programs to all stakeholders, but perhaps most especially to utility customers, who may not be well-acquainted with the overall benefits of programs funded through their electricity rates.

Another positive aspect of this document is its broach approach to EE in buildings. Single family, multifamily, small to large commercial buildings and public buildings are identified and addressed. While there are common objectives of reducing energy and water use for all these buildings, the technologies, market structures, and financial approaches are uniquely different. There’s an urgent need for innovations in how EE programs for multifamily and many commercial buildings are financed that overcome split incentive challenges. While green leases and other similar measures help tackle these problems, much more “friction-less” processes and financial benefits to those investing the upfront capital for upgrades will be necessary to accelerate increased EE in the California building stock.

Encouraging the transparency of building data with regards to energy efficiency has another benefit. The barriers to technology innovations in materials sciences will be reduced because innovators and their funders will increasingly see that there are addressable markets for their solutions. But in the short run, the policy and capital innovations based on this roadmap for energy efficiency may for once leapfrog technology innovations.

Share

Energy Efficiency 2.0 – A New Definition Underway in California

What does energy efficiency mean to you? Does it mean replacing old light bulbs with energy-stingy LEDs? Is it a remodeling project that installs double or triple pane windows? Does it include upgrading appliances like air conditioners and refrigerators to take advantage of Energy Star ratings and utility rebate programs? It means all of those things, and in states like California that employ aggressive energy efficiency (EE) policies and standards from widget to building envelope, it’s been a successful strategy to reduce per capita energy consumption.

Earlier this year the governor of California announced an energy policy, although he didn’t call it that at the time. One of the goals is to double EE savings in existing buildings by 2030. To get there, breakthrough innovations in EE policies, technologies, and financing are required. In other words, its time upgrade from EE 1.0 to EE 2.0, with a very heavy emphasis on building retrofits.

The Next Generation of Energy Efficiency Project at Stanford University aims to define EE 2.0. Led by Dian Grueneich, former Commissioner of the California Public Utilities Commission and now a Senior Research Scholar at the Precourt Energy Efficiency Center and the Hoover Institution, the project will create a series of whitepapers to help mobilize actions that deliver Governor Brown’s “doubled down” objective.

The first White Paper, to be issued this spring, will discuss some of the steps Ms. Grueneich has identified to define an EE 2.0 framework:

  1. Articulate EE’s new role in terms of its increased value to economic, energy, and environmental security
  2. Structure transparency and build awareness through annual performance reporting on EE gains
  3. Revise state agency roles and processes to streamline policy and projects support
  4. Align EE regulatory rules and policies with state climate goals
  5. Improve customer-funded programs
  6. Investigate the state’s development and enforcement of codes and standards that can accelerate EE goals
  7. Identify and support innovations in technologies, policies, and financial products that contribute to EE savings

Technology innovations are abundant to retrofit existing buildings to higher EE savings. Much of that technology is relatively low tech too. Insulation and double pane windows aren’t rocket science. Of course, there’s exciting work in labs that will improve building envelope materials in the form of new paints as well as “smart” windows.

The pre-eminent challenges to creating the Next Generation of EE are in policy (including agency governance) and finance. Compare an EE investment in insulation upgrades to an investment in solar panels. Both have upfront acquisition costs with a promise of energy bill reductions enjoyed in the future. Homeowners have a range of options that include use of PACE programs to finance solar investments or partnering with firms that handle the upfront acquisition and installation costs and share in the production and tax benefits. Insulation upgrades lack the same diversity of financial programs and partnership options.  As Ms. Grueneich described at a recent session, “in energy efficiency thousands of different decisions made every day by individuals, organizations, and governments. We have to use our policies and the private market to set up similar models to solar that make efficiency easy and attractive, for both consumers and providers alike.”

Ms. Grueneich noted that EE 1.0 consists of “mostly single ‘widgets’ and low uptake by consumers and businesses.“ But there’s pent-up demand and new technologies that EE 1.0 doesn’t address. How many more decisions about energy efficiency could be made if only policies and financial instruments better supported them? The Next Generation of Energy Efficiency Project just may provide that answer.

Share

What Energy Harvesting Means to Smart Grid and M2M Sectors

New terms and jargon sometimes appear over time. “Sustainable” is one example. From a shorthand description of smart, long term practices applied to fisheries and agriculture to thoughtful consumption embedded into modern society, it has achieved jargon status.

The term, and its conceptual basis is now migrating into electronic component power technologies and designs. Self-sustainable operation means that whatever the device or function, it is self-powered, and that has extraordinary possibilities for the Smart Grid and M2M sectors. Just a few short years ago, embedded sensing and communications functions in devices created insurmountable engineering challenges in terms of how to power those devices. No matter how cleverly chip manufacturers reduce energy consumption – there’s still a requirement for some energy. That energy source was either a wired connection to the grid, or batteries. There have been advances in battery technologies at both the micro scale to utility scale, but without an ability to recharge batteries, there is a lifecycle limitation that culminates in battery or device replacement. That limitation in turn impacts the potential of innovative M2M applications in Smart Grid, Smart Infrastructure, and verticals like health.

There’s new research underway that can unlock the potentials for the Smart Grid and M2M sectors. It builds on energy harvesting research, but has the objective of completely eliminating the need for a wired power delivery or battery replacements in devices. The best phrase to describe this growing field of research is energy self-sufficiency. Energy self-sufficiency will be a term used with increasing frequency in the Smart Grid and M2M sectors.

There are a number of promising sources of energy that can be used to deliver energy self-sufficiency such as solar, piezoelectric (kinetic forms like vibration), and thermal energy. There are pros and cons to each of them, and they are already deployed in chipsets – sometimes in combination for power provisioning. But electromagnetic waves can be harvested too – a concept first proposed by Nikola Tesla and Heinrich Hertz over a century ago.

There’s no shortage of ambient wireless or radio frequency (RF) activity around those of us living in developed economies. In fact, we’re practically marinating in electromagnetic waves. Interesting energy self-sufficiency research includes both near-field and far-field applications that harvest TV, cellular, and Wi-Fi signals. Other research continues to build knowledge on optimal operation modes for power-up, sleep, and active states of energy self-sufficient devices.

These technologies may not add up to powering devices like smart phones completely without grid connection, but they may extend the time between needed connections to grids. But more importantly for the Smart Grid and M2M sectors, these technologies may power sensor platforms in a broad range of applications and increase the energy harvesting potential of solar panels that can also perform as hybrid RF harvesters. It’s an intriguing expansion of the green revolution in electronics.

For utilities, this can have significant impacts on projections for future grid-delivered power and in opportunities to apply more “standalone” sensing and control mechanisms into operations. That second impact also translates into new possibilities for Smart Infrastructure applications – particularly where water grids are concerned. Without a doubt, energy self-sufficiency in sensing and communications devices should have communications service providers and M2M application providers cheering as conventional technology constraints decrease and their market opportunities grow.

Share

Energy Data Privacy Risks – What You Don’t Know Can Hurt You

Wednesday is Data Privacy Day in the USA, and it should receive heightened awareness after the recent Sony Pictures cyberattack. While media attention focused on cybersecurity weaknesses, privacy is the natural consequence of good cybersecurity. Security – cyber and physical – is a strategy that ensures a privacy outcome.

Unfortunately, determined cyberattackers or the deliberate or careless actions of current or former employees can defeat the best cybersecurity and physical security systems. Mandatory privacy policies and protections minimize the risks that sensitive data will be exposed – whatever that data might be. Sensitive data such as social security numbers, bank account information, and personal health records are managed to protect privacy. Utilities already manage sensitive data too, but need to prepare for significant increases in privacy risks.

Sensors are gathering more and/or new types of data. Inexpensive data transmission and storage makes it possible to handle new volumes, varieties, and velocities of data. Smart Grid technologies can deliver new granularity in time-stamped data about consumer use of electricity, gas or water. More M2M technologies can generate location-based data that accurately maps activity over the course of a day.

All these converging technologies increase data privacy risks, and make the publication of Data Privacy for the Smart Grid* very timely. It’s a key reason I helped write it. The Smart Grid delivers a myriad of benefits to utilities and consumers, but it also creates new risks and new concerns about data privacy. Energy usage data is invaluable to help intelligently manage energy and reduce utility operational costs and consumer costs. Privacy risks emerge in questions of how that energy usage data is used, shared, stored and otherwise accessed.

Utilities have prominent roles in the collection of energy usage data, but they may not be the only entities gathering, receiving, storing, or using that data. In the future it is very likely that businesses other than utilities may manage generation assets or water conservation equipment, sell electricity, or collect energy usage data directly from consumers. The variety of potential players coupled with new services and technologies can easily confuse everyone with blurry responsibilities for privacy protection and more exposure risks. Will consumers always know the “chain of data custody” for their energy usage data? The answer is no, and that has serious policy, process, and training implications for utility executives and vendors of solutions capable of gathering, transmitting, and using this data.

This is definitely a situation where what you don’t know about privacy risks can hurt you – in the forms of criminal or civil litigation and financial penalties, bad publicity, lost goodwill, and reputation damage. What steps should utilities and vendors take to protect the privacy of their customers’ energy usage data and the fallouts of failure? The answers are the focus of next week’s article.

*  Published by Taylor and Francis Group. Co authors: Christine Hertzog and Rebecca Herold. ISBN: 978-1-46-657337-6. Available for pre-sale now.

Share

Will California’s Energy Policy Become the World’s Energy Policy?

California recently was ranked by the World Bank as number eight in world economies, ahead of Russia and Italy and just behind Brazil. Jerry Brown, re-elected as governor, delivered an inaugural address that included an energy policy in the form of three energy objectives for 2030. Given this state’s ability to make markets through its imposing economic and innovation strengths, here are my projections about what this energy policy will mean for California, electric utilities, Smart Grid vendors, and the world.

Energy objective 1: Increase electricity from renewable sources to 50%.

The state was well on its way to achieving the 2020 objective of integrating a 33% mix of renewables into its electricity sources. This new goal puts increased emphasis on energy storage to firm up even more intermittent renewables, so the state market will markedly expand for both utility-scale and distributed renewable generation and storage solutions. Distributed generation, particularly in the form of rooftop solar, will also be required to meet this objective. California utilities will seek regulatory approval to rent customer rooftops and operate solar generation assets on an aggregated scale, as long as these assets count towards their expected renewable investments. Vendors with distributed grid operations management solutions have a bright future in the state.

Energy objective 2: Reduce petroleum use in transportation by 50%. Don’t bank on a focus on technologies that improve miles per gallon in internal combustion engines. California’s strong support for carbon cap and trade markets and climate change initiatives put the emphasis on clean alternative fuels. Hydrogen technologies and fuel cell cars could be part of this strategy. However, the regulated electric utilities have a new leverage point to build EV programs and create new opportunities to explore transactive energy scenarios that firm intermittent renewables. PG&E recently announced a pilot program with BMW.   Municipalities will also look at greenhouse gas reduction goals through systemic transportation transformations. Community Choice Aggregation (CCA) initiatives and municipal utilities will adopt EVs for their flexibility in smart charging.

Energy objective 3: Double the efficiency of existing buildings and make heating fuels cleaner. California enacts new building energy efficiency standards every three years that typically apply to new buildings. It’s noteworthy that this energy objective highlighted existing building stock. Building energy efficiency retrofits have multiple benefits – local jobs in communities, and accrued savings from reduced energy bills for residential and business consumers. Since California is one of eleven states that decoupled both electricity and natural gas, regulated utilities won’t see negative impacts on their bottom lines. Expect innovations in programs that encourage energy efficiency retrofits for multi-family and rental properties and more PACE-like programs that focus on energy efficiency rather than generation. With regards, to cleaner heating fuels, most California homes use natural gas, which emits those bad greenhouse gases. However, look for most policy and investment activity in commercial buildings, which can benefit from combined heat and power (CHP) and even more energy-efficient combined cycle heat and power (CCHP) technologies to heat building spaces. The solutions here are much more mature than they are for residential, although this 2030 objective offers significant impetus to future Department of Energy Funding Opportunity Announcements.

The leader of the eighth largest world economy said, “How we achieve these goals and at what pace will take great thought and imagination mixed with pragmatic caution. It will require enormous innovation, research and investment. And we will need active collaboration at every stage with our scientists, engineers, entrepreneurs, businesses and officials at all levels.” The good news is that California has all the ingredients to make it happen, and what happens in California does not stay there.

Share