Get Adobe Flash player

distributed energy resources

How much can change in a year? When it comes to Smart Grid and Smart City topics, the answer is quite simply – a lot can change. Here’s progress report on my ten predictions about Smart Grid and Smart Cities activity by 2020. The first five are featured this week. You can review the complete predictions here and here, and judge for yourself the quality of my crystal ball.

  1. California hits and exceeds its RPS objective of 33% renewable sources of electricity by 2020 – the most ambitious of all states with this calendar deadline. As of October 2014, the state’s three investor-owned utilities (IOUs) obtained 22.7% of their electricity from renewables, and are on track to meet the 2016 25% milestone. The California Public Utilities Commission (CPUC) projects that solar alone will contribute 42% of the state’s total renewables generation. The state has about 245,000 rooftop solar PV installed now, and by 2017 the aggregated generation from these systems will approach 3,000 MW.
  2. Grid resiliency strategies take priority for investor-owned, municipal, and rural utilities. The Electric Power Research Institute (EPRI) has a number of initiatives in grid resiliency, and their clients are utilities. Governmental, commercial and residential interests build microgrids that are capable of delivering a limited degree of building self-sufficiency in energy. NYSERDA announced the first in the nation NY Prize, a $40 million competition to build microgrids and other local energy grids. New Jersey launched the Energy Resilience Bank – the first public infrastructure bank in the country focused on DER for energy resiliency. This bank is capitalized with $200 million for projects that harden critical infrastructure. Utility support for microgrids is growing as utilities like Con Ed see that the Reforming Energy Vision initiative presents an opportunity to redefine utility business models to accommodate new microgrid product and service offerings.
  3. As utilities consider grid hardening, cities redefine what being a smart city really means. Smart cities aren’t smart if their critical infrastructure relies on fragile transmission or distribution grids. Definitions abound for smart cities, but the lack of consistent standardized frameworks are serious obstacles to development of smart cities. For some states, notably New York, Connecticut, and New Jersey, (states hammered by Superstorm Sandy among other weather events) a city is smart if it upgrades critical infrastructure and deploys distributed energy resources and microgrids for select community buildings and systems.
  4. Consumer intermediation threats abound for utilities. Investor guidance reports released earlier this year pointed out a number of threats to the existing regulated utility business model, and noted the potential for confrontations between tech giants (notably Google and Apple) and utilities in value-added services (specifically energy management services) to consumers. Consumers are becoming increasingly savvy about solar generation, and companies like Solar City and Sungevity have capitalized on these trends to make it easy for consumers to build relationships with non-traditional energy companies.
  5. Standards that define how to integrate or grid-tie microgrids and other standalone generation and energy storage assets for bi-directional electricity flows to utility distribution grids are globally adopted. The existing IEEE 1547 standard currently used for DER such as solar PV requires that these assets must be de-energized if they are tied to the grid and it loses power. While necessary as a safety measure, it defeats the purpose of microgrids remaining up to power critical infrastructure or meaningfully contribute power back to the grid. The Smart Grid Interoperability Panel (SGIP) started Priority Action Plan (PAP) 24 for microgrid operational interfaces. This PAP focuses on information models and interoperability and consistency of signals used by microgrid controllers. Another group called PAP 25 will encourage standards that harmonize financial data, as well as forming a new group focused on Transactive Energy. These are all critical steps to develop the standards that will govern bi-directional electricity and realize the full promise of the Smart Grid, as well as power smart cities.

 

There’s been real progress for the first five predictions and they are well on their way to realization by 2020. Next week I will review progress on the final five predictions.

Share

Latest Blog

    My final five predictions about the Smart Grid, including EVs, smart buildings, and renewables are making good progress. What are your predictions for Smart Grid achievements by 2020?

    Share

    more...

Click on this video to learn more about our Consumer Focus Strategy for utilities. We recommend full screen mode for best results.


Video Interview with Thought Leaders in Technology, Policy, and Financial Innovations
(Click each link for more...)

In this European Utility Week Engerati interview hosted by Christine Hertzog, Managing Director of the Smart Grid, Library, Jeanne Fox discusses the work of NARUC as well as the recent storms in the US (specifically New Jersey), and the damage they wrought on the electric utility infrastructure.


Innovative Smart Grid and ICT technologies are poised to enhance utility operations and services delivery. That means utility product and service acquisition processes must adjust to handle new product lifecycles. Managing Utility Technology and Service Acquisitions in the Smart Grid Age offers valuable guidance on how to future-proof your decisions.

Click here to read more and to request this complimentary white paper now!


Archives

Join Mailing List

The Smart Grid Library Newsletter contains insights, announcements, and discounts to events about smart grids. Click "Join" below to sign up for your complimentary digitized subscription today!

Sign Up Now

Events

No events to show

Linked In

Tell a Friend

Tell a Colleague about our site.