This week’s guest author is Barry Haaser, Managing Director of the OpenADR Alliance.  His article clarifies the role that this standard plays in a range of applications.

The OpenADR standard for automated demand response is often misunderstood as just a standard for demand response. In fact, it is a powerful standard capable of supporting a broad spectrum of applications that fall under the demand response umbrella. As the only global standard for demand response, OpenADR is uniquely positioned to address a multitude of load control and load management applications.

In an effort to help utilities and system operators create more demand response programs and further product development, the OpenADR Alliance created an OpenADR 2.0 Program Guide.  This draft document defines typical automated demand response (ADR) programs and explains how they are implemented using OpenADR 2.0. The OpenADR Program Guide expands the range of demand response (DR) deployment scenarios available to energy providers, while giving equipment manufacturers additional information on typical DR Program usage models so they can support a full range of DR programs in their products.

The program guide provides utilities with examples of typical DR programs so that they can model their own DR program implementations, and equipment suppliers can understand typical DR Program usage models to help validate interoperability. The program guide provides templates for popular DR programs. These templates include:

  1. Critical Peak Pricing: This rate and/or price structure is designed to encourage reduced consumption during periods of high wholesale market prices or system contingencies by imposing a pre-set high price for a specific time period (such as 3pm – 6pm on a hot summer weekday).
  2. Capacity Bidding Program: This program is used by Independent System Operators (ISOs) and utilities to obtain pre-committed load shed capacity from aggregators or self-aggregated customers when they anticipate high wholesale market prices, power system emergency conditions, or as part of normal energy resource utilization by calling DR events during a specified time period.
  3. Residential Thermostat Program/Direct Load Control: This demand response program describes utility or other energy service provider communications with smart thermostats or remotely controls enrolled customer loads, such as air conditioners. These programs are primarily offered to residential or light commercial customers.
  4. Fast DR Dispatch/Ancillary Services Program: Fast DR is used by ISOs and utilities to obtain pre-committed load response in “realtime.”  Resources are typically dispatched with a latency ranging from 10 minutes for resources that are used as reserves to 2 seconds for resources that are used for regulation purposes.
  5. Electric Vehicle (EV) DR Program: This demand response activity modifies the cost of charging electric vehicles to cause consumers to shift consumption patterns.
  6. Distributed Energy Resources (DER) DR Program: This demand response activity smooths the integration of distribute energy resources into the Smart Grid.

This program guide just scratches the surface of the many programs that can be supported by the OpenADR standard. You can download the draft program guide and provide us with your feedback prior to publication this summer.

Share